1. 서 론
2. 실험체 변수와 재하실험
2.1 실험체 변수와 실험체 제작
2.2 재하 실험
3. 실험 결과
3.1 실험체의 파괴거동
3.2 실험체의 휨모멘트와 철근 변형률 관계
3.3 실험체의 균열휨모멘트와 항복휨모멘트 및 휨모멘트 비율
3.4 KDS 14 20 20 콘크리트구조 휨 및 압축 설계기준의 휨부재 최소 철근량 규정에 따른 평가
4. 휨부재의 최소 철근량 기준 비교
4.1 KDS 14 20 20 콘크리트구조 휨 및 압축 설계기준에 따른 휨부재의 최소 철근량
4.2 ACI 318-19에 따른 휨부재의 최소 철근량
4.3 KDS 24 14 21 콘크리트교 설계기준에 따른 휨부재의 최소 철근량
5. 결 론
1. 서 론
철근콘크리트 휨부재는 휨모멘트에 저항하도록 단면의 인장부에 인장철근을 배치한 부재인데, 너무 적은 양의 인장철근이 배치되면 파괴가 임박하였다는 징후가 나타남과 동시에 급작스럽게 파괴되는 취성거동을 보인다. 휨모멘트가 작용하기 시작하는 초기에는 콘크리트 단면의 인장부와 인장철근이 같이 인장응력을 받으면서 휨모멘트에 저항하는데, 휨 균열이 발생할 때까지는 인장철근에 작용하는 인장력이 콘크리트에 작용하는 인장력에 비하여 매우 작다. 휨모멘트가 증가하여 콘크리트 인장연단에 균열이 발생한 후 균열이 인장철근의 위치까지 진전되면 인장철근에 작용하는 인장력이 급격히 증가하는데, 이것은 균열 발생 전에 콘크리트 인장부가 받고 있던 인장력을 인장철근이 모두 받기 때문이다. 이때 만일 매우 적은 양의 인장철근이 배치된 경우라면, 균열이 발생함과 동시에 인장철근의 변형률과 응력이 매우 급격하게 증가하여 인장철근이 항복한 후 소성상태가 된다. 인장철근이 소성상태가 된 단면은 인장부의 변형률이 급격히 증가하고, 즉시 압축연단 변형률이 콘크리트의 극한변형률에 도달하는 파괴상태가 된다. 이러한 거동은 매우 빠르게 진행되므로, 매우 적은 양의 인장철근이 배치된 휨부재는 콘크리트 인장부에 균열이 발생하면서 즉시 파괴된다. 이는 취성인 파괴거동이며 매우 바람직하지 않은 파괴형태이다. 따라서 한국의 설계기준 KDS 14 20 20 콘크리트구조 휨 및 압축 설계기준(KCI 2022)과 KDS 24 14 21 콘크리트교 설계기준(KIBSE 2021)을 포함한 모든 콘크리트구조설계기준에는 이러한 파괴가 발생하지 않도록 제한하는 기준이 규정되어 있다.
이 연구에서는 설계기준의 최소인장철근에 비하여 매우 적은 양의 인장철근을 배치한 네 가지 크기 12개의 휨부재를 제작하고 재하실험을 통하여 파괴거동을 관찰하였으며, 실험 결과를 바탕으로 설계기준의 최소 철근량 규정의 안전성을 분석하였다.
2. 실험체 변수와 재하실험
2.1 실험체 변수와 실험체 제작
Table 1은 실험체의 제원과 실험변수를 나타낸다. 모든 실험체는 직사각형 단면으로 단면 폭(b)이 400 mm로 일정하며, 철근 중심과 인장연단 사이의 거리를 48 mm로 하여 D16 철근 한 가닥을 배치하고 단면 깊이를 네 가지로 하여 네 가지 철근비를 갖도록 하였다. 단면 깊이(h)는 250 mm, 400 mm, 500 mm, 750 mm로 각각 H250, H400, H500, H750의 명칭으로 구분하고, 동일한 크기의 실험체를 3개씩 제작하여 모두 12개의 실험체를 제작하였다. 같은 크기의 실험체 3개는 각각 KEPIC60, SD400S, SD400의 세 가지 D16 철근을 배치하였고, 지점에서의 정착파괴가 방지되도록 인장철근의 단부에 90도 갈고리를 두었으며 전단철근은 배치하지 않았다. 콘크리트 압축강도는 변수로 택하지 않고 모두 같은 강도를 갖도록 동일한 배합으로 동시에 실험체 콘크리트를 타설하였다. 재하 실험을 수행하는 재령에서의 콘크리트 압축강도는 평균 24.0 MPa로 산정되었다.
Table 1.
실험체에 배치된 KEPIC60 철근은 한국의 원전설계기준인 KEPIC Code SNB(KEA 2010)와 SNC(KEA 2015)에 규정된 요구조건에 만족하도록 생산된 철근이다. 한국의 원전설계기준 KEPIC Code는 ACI 359 Code(ASME Section III division 2, 2007)와 ACI 349 Code(2013)와 동일하게 철근의 강도 요구조건은 일반구조용 철근에 대한 표준인 ASTM A615(2022a)에 따르고 연신율은 용접용과 내진용 철근에 대한 표준인 ASTM A706(2022b)에 따르도록 규정하고 있다. SD400S 철근은 설계기준항복강도가 400 MPa로 한국 철근표준 KS D 3504(2021)의 특수내진용 철근의 요구조건에 만족하도록 생산된 철근이며, SD400 철근은 설계기준항복강도가 400 MPa로 KS D 3504의 일반용 철근 요구조건에 만족하도록 생산된 철근이다. 이 세 종류의 D16 철근에 대하여 각각 3개씩 인장시험을 수행하였고, 각각의 평균값을 구하여 Table 2와 Fig. 1에 나타내었다. Table 2는 3개 시험편의 평균값인 항복강도(), 인장강도(), 항복강도에 대한 인장강도의 비율로 정의되는 강도비()를 나타낸다. 세 종류 D16 철근의 응력-변형률 곡선을 보이는 Fig. 1에 나타난 바와 같이 SD400S 철근과 SD400 철근은 항복점, 항복고원, 변형률 경화 시작점이 뚜렷하게 나타났으나 KEPIC60 철근은 그 세 가지가 뚜렷하게 나타나지 않았다. 뚜렷한 항복점이 나타나지 않은 KEPIC60 철근의 항복응력은 KS D 3504에 따라 0.2% 오프셋법으로 결정하였다. 이렇게 결정한 세 종류 D16 철근의 항복강도는 각각 445 MPa, 443 MPa, 446 MPa로 거의 유사한 값을 나타내었다. 인장강도는 KEPIC60 철근이 705 MPa로 SD400S 철근의 589 MPa이나 SD400 철근의 569 MPa보다 큰 값을 보였고, 강도비는 각각 1.58, 1.33, 1.28로 KS D 3504의 일반용 철근 요구조건인 1.15와 특수내진용 철근의 요구조건인 1.25를 모두 초과하였다. 따라서 KEPIC60, SD400S, SD400의 세 가지 철근 모두 KS D 3504의 강도 조건을 만족하는 철근으로 판정되었으며 연신율 조건도 만족하였다. 연신율 조건의 만족에 대해서는 Pyo et al.(2023)의 연구에 나타나있다.
Table 2.
Type of steel reinforcement | KEPIC60 | SD400S | SD400 |
Yield strength, (MPa) | 445 | 443 | 446 |
Tensile strength, (MPa) | 705 | 589 | 569 |
1.58 | 1.33 | 1.28 |
2.2 재하 실험
재하 실험은 단순보의 지점조건으로 수행하였다. 하중은 200ton UTM(Universal Testing Machine)을 0.005mm/s의 속도로 변위 제어(displacement-controled) 방식으로 가하였고, 균열과 파괴가 발생하는 단면을 한 곳에 고정하기 위하여 경간 중앙에 하나의 집중하중을 가하였다. 집중하중이 작용하는 경간 중앙의 단면에는 인장철근에 변형률 게이지를 부착하여 재하 실험 중에 인장철근의 변형률을 측정하였다. 경간 중앙 단면의 상면은 UTM이 접촉하는 위치이므로 콘크리트 표면에 변형률 게이지를 부착할 수 없었으며, 하면에는 처짐을 측정하기 위한 LVDT 변위계를 부착하기는 하였으나 큰 균열이 발생하여 벌어지면서 급작스러운 취성파괴가 발생할 가능성이 있으므로 실험 도중에 계측기를 제거하여 파괴까지 처짐을 측정하지는 못하였다.
3. 실험 결과
3.1 실험체의 파괴거동
하중이 가해지기 시작하여 균열이 발생하기 전까지는 모든 실험체에 눈에 띌만한 변화가 나타나지는 않았으나, 균열 후에는 철근비에 따라 다소 다른 거동을 보였다. 철근비가 상대적으로 큰 H250 실험체와 H400 실험체는 중앙단면 하단 인장부에 미세한 균열이 1개 또는 2개가 발생하였고, 하중이 증가할수록 균열의 폭이 점점 증가하면서 상단 압축부로 진전되다가 콘크리트 압축연단이 압쇄되는 파괴형태를 보였다.
철근비가 상대적으로 작은 H500 실험체와 H750 실험체는 중앙단면 하단 인장부에 미세한 균열이 발생한 뒤 단면 하단 인장부에 눈에 띄는 1개의 큰 균열이 발생하였다. 그 후 하중이 증가할수록 압축연단 가까이까지 진전된 균열이 크게 벌어지다가 하중이 더 이상 증가하지 않는 상태가 되었다. 다만 H500 실험체와 H750 실험체에서는 콘크리트 압축연단이 압쇄되는 파괴형태가 뚜렷하게 관찰되지는 않았다. Figs. 2~5는 각 실험체의 파괴모습으로, 모든 실험체가 매우 큰 폭의 균열이 압축 연단 가까이까지 진전되어 파괴되었다.
3.2 실험체의 휨모멘트와 철근 변형률 관계
Fig. 6은 각 실험체의 휨모멘트-철근 변형률 관계를 나타낸다. 여기서 휨모멘트는 각 실험체에 대하여 계측된 하중 값으로 계산한 결과이다. 하중재하 초기에 휨모멘트가 증가하다가 갑자기 감소하는 정점은 단면에 휨 인장 균열이 발생하는 균열휨모멘트 을 나타낸다. 균열이 발생한 후 휨모멘트가 감소하다가 다시 증가하는 형상의 휨모멘트-철근 변형률 계측 결과가 나타나는 것은 실험체에 균열이 발생하는 즉시 처짐이 순간적으로 크게 증가하여 UTM 내부의 유압이 순간적으로 감소하기 때문인 것으로 판단된다.
균열이 발생한 후에는 균열 전보다 낮은 기울기로 휨모멘트가 증가하다가, 배치된 철근의 종류에 따라 휨모멘트가 더 낮은 기울기로 완만하게 증가하거나 일정한 값을 보인다. 이러한 현상은 Fig. 1에 나타난 바와 같이, 철근의 응력-변형률 곡선의 뚜렷한 항복점과 항복고원의 존재 여부에 따른 것이다. 즉, KEPIC60 철근이 배치된 실험체는 뚜렷한 항복점과 항복고원이 나타나지 않고 응력이 계속 증가하는 철근의 특성에 따라, 모든 실험체가 철근이 항복한 후에도 휨모멘트가 증가하였다. 뚜렷한 항복점과 항복고원이 존재하는 SD400S 철근과 SD400 철근이 배치된 실험체는 H500-SD400S 실험체를 제외한 나머지 모든 실험체에서 철근이 항복한 후 휨모멘트가 일정한 값을 나타내었다.
한편 Fig. 6은 철근비에 따라 균열휨모멘트와 항복휨모멘트의 크기 차이가 나타난다는 것을 보인다. 즉, 철근비가 각각 0.0024와 0.0014인 H250 실험체와 H400 실험체는 균열휨모멘트보다 항복휨모멘트와 휨강도가 더 큰 결과를 보였고, 철근비가 각각 0.0011과 0.0007인 H500 실험체와 H750 실험체는 균열휨모멘트보다 항복휨모멘트와 휨강도보다 더 작은 결과를 보였다. 이런 계측결과는 실험실에서 UTM으로 가해지는 하중과 구조물의 파괴 후에도 존재하는 실제 하중의 차이에 따른 것으로 생각된다. 즉, 변위 제어 방식의 하중 제어가 아니라 하중이 무게로써 가해졌다면, 균열휨모멘트보다 항복휨모멘트가 더 큰 H250 실험체와 H400 실험체는 균열이 발생한 후 항복점까지 휨모멘트와 철근 변형률 및 처짐이 증가하였을 것이다. 항복휨모멘트가 균열휨모멘트보다 더 작은 H500 실험체와 H750 실험체에 하중이 무게로써 가해지는 경우에는 Fig. 6의 (c)와 (d)와는 다르게, 균열이 발생한 후 즉시 휨 파괴가 발생하여 휨모멘트가 급격히 감소하는 취성의 하중-변형 관계가 나타났을 것으로 생각된다.
3.3 실험체의 균열휨모멘트와 항복휨모멘트 및 휨모멘트 비율
Table 3은 실험수행 중 계측으로 얻은 각 실험체의 균열휨모멘트 와 항복휨모멘트 및 균열휨모멘트에 대한 항복휨모멘트의 비율 을 나타내며, 또한 동일 크기 실험체에 대한 균열휨모멘트 평균값 와 항복휨모멘트 평균값 및 그 비율 을 나타낸다. 여기서 항복휨모멘트가 뚜렷한 값으로 나타나지 않는 실험체에 대하여는 항복 전과 항복 후의 휨모멘트-철근 변형률 곡선의 직선부분을 연장하여 만나는 점을 항복점으로 결정하고, 그 점의 휨모멘트를 항복휨모멘트로 선정하였다.
Table 3.
Table 3에 나타난 바와 같이 H250, H400, H500, H750 실험체의 비율은 각각 1.80, 1.24, 0.79, 0.65로 철근비가 작은 실험체일수록 휨모멘트 비율이 작아짐을 나타낸다. 이 실험연구에서 균열휨모멘트 평균값 와 항복휨모멘트 평균값 가 같을 경우, 즉 비율이 1.0일 경우는 부재의 깊이가 400 mm와 500 mm 사이이며 철근비는 H400 실험체의 철근비인 0.0014와 H500 실험체의 철근비인 0.0011 사이일 것으로 유추할 수 있다.
3.4 KDS 14 20 20 콘크리트구조 휨 및 압축 설계기준의 휨부재 최소 철근량 규정에 따른 평가
KDS 14 20 20 콘크리트구조 휨 및 압축 설계기준에 규정된 최소 철근량 규정은 식 (1)과 같고, 이 식을 변환하여 휨모멘트 비율의 한계로 표현하면 식 (2)와 같다. 여기서 균열휨모멘트 은 KDS 14 20 30 콘크리트구조 사용성 설계기준(KCI 2021)에 따라 식 (3)의 콘크리트 파괴계수를 적용하여 계산한다. 이 실험연구에서 콘크리트의 평균압축강도가 24.0 MPa이므로, 콘크리트 파괴계수 은 3.09 MPa로 계산되었다.
Table 4는 콘크리트의 평균압축강도 24.0 MPa과 세 종류 철근의 항복강도 평균값 445 MPa을 적용하여 설계기준 KDS 14 20 20과 KDS 14 20 30에 따라 계산한 실험체의 균열휨모멘트 , 공칭휨강도 , 설계휨강도 과 균열휨모멘트에 대한 공칭휨강도의 비율 , 균열휨모멘트에 대한 설계휨강도의 비율 , 균열휨모멘트의 1.2배에 대한 설계휨강도의 비율 을 나타낸다. H250, H400, H500, H750 실험체의 균열휨모멘트 계산 값 은 Table 4에 나타난 바와 같이 각각 12.86, 32.91, 51.44, 115.73kN·m이므로, Table 3의 균열휨모멘트 평균 실험값 의 각각 1.17배, 1.25배, 0.90배, 0.92배에 해당한다.
Table 4.
Fig. 7의 (a)는 4 종류 실험체에 대한 Table 3의 비와 Table 4의 비 및 비를 나타내며, 식 (2)의 휨모멘트 비율의 한계 1.41과 함께 이에 해당하는 실험체의 비와 철근비를 나타낸다. Fig. 7(a)에 나타난 바와 같이 4 종류 실험체의 비는 설계기준에 따른 해석에 의한 비보다 크게 나타났으며, 직선보간으로 휨모멘트 비율 한계 1.41에 해당하는 경우를 구하면 비가 0.864이고 철근비가 0.00173일 것으로 추측할 수 있었다. 이렇게 결정된 0.864의 비를 가지고 인장철근의 중심과 인장연단 사이의 거리가 48 mm로 실험체와 동일한 단면을 구하면 가 354 mm이고 가 306 mm인 단면이 된다. 이 단면에 대하여 식 (2)의 휨모멘트 비율의 한계를 만족하는 철근비를 구하면 0.00224가 된다. Table 5는 가 354 mm이고 가 306 mm로 비가 0.864인 단면에 대하여 KDS 14 20 20의 조건을 적용하여 구한 최소 철근비 0.00224를 갖는 단면의 휨모멘트 비율과 함께 4개의 실험체가 갖는 철근비의 휨모멘트 비율을 나타낸 것이며, 이 결과를 Fig. 7의 (b)에 실험체의 휨모멘트 비와 함께 나타내었다.
Table 5.
이 결과를 정리하면 KDS 14 20 20의 조건을 만족하는 단면, 즉 비가 1.41로 비가 1.2인 단면의 철근비는 0.00224이고 이 실험으로 얻은 최소 철근비는 0.00173이다. 따라서 이 실험결과에 따르면 해석으로 구한 최소 철근비 0.00224는 실험으로 얻은 값 0.00173의 1.29배로 보수적인 결과를 제공한다고 할 수 있다. 다만 이와 같은 결과는 실험체의 콘크리트 압축강도가 설계기준압축강도와 동일한 경우이므로 실제 구조물에서도 동일하게 보수적인 결과를 제공한다고는 말할 수 없을 것이다. 이것은 실제 구조물은 설계기준압축강도보다 높은 배합강도를 갖는 콘크리트로 시공되고, 또 재령효과에 의해서 실제 압축강도가 설계기준압축강도보다 상당한 수준으로 높은 것이 일반적인데 콘크리트 압축강도가 증가하면 부재의 균열휨모멘트가 증가하지만 휨 강도의 증가는 매우 미미하기 때문이다. 물론 설계기준항복강도보다 높은 항복강도를 갖는 철근이 배치되는 것이 일반적이므로 이런 경우에는 휨강도도 증가하지만, 콘크리트의 압축강도는 설계기준압축강도보다 매우 높으면서 철근의 항복강도가 설계기준항복강도에 비하여 그리 높지 않은 경우가 취성파괴 방지의 불리한 경우가 될 것이다. 따라서 식 (1)의 균열휨모멘트 에 곱하는 계수 1.2가 실제 구조물의 취성파괴를 방지하는 목적의 최소 철근 규정으로 충분한지에 대해서는 추가의 검토가 필요할 것이다.
4. 휨부재의 최소 철근량 기준 비교
네 가지 크기의 실험체 단면에 Table 5에 나타낸 깊이(h) 354 mm인 단면을 추가하여 분석하였다. 즉, 폭(b)이 400 mm이고 깊이(h)가 각각 250 mm, 354 mm, 400 mm, 500 mm, 750 mm로서 h에 대한 유효 깊이의 비 가 각각 0.808, 0.864, 0.880, 0.904, 0.935인 단면이다. 이 단면들을 대상으로 KDS 14 20 20 콘크리트구조 휨 및 압축 설계기준, ACI 318-19(2019), KDS 24 14 21 콘크리트교 설계기준(한계상태설계법)의 휨부재 최소 철근단면적 규정을 적용하고, 그 결과를 비교하고자 한다.
4.1 KDS 14 20 20 콘크리트구조 휨 및 압축 설계기준에 따른 휨부재의 최소 철근량
앞 절에서 언급한 바와 같이 KDS 14 20 20 콘크리트구조 휨 및 압축 설계기준에 규정된 최소 철근량 규정은 식 (1)과 같으므로, 다섯 가지 크기의 단면에 대하여 24 MPa의 콘크리트 설계기준압축강도()와 400 MPa의 철근 설계기준항복강도()를 적용하여 식 (1)을 만족하는 철근비를 구한 결과는 0.00286, 0.00249, 0.00240, 0.00227, 0.00212이다.
4.2 ACI 318-19에 따른 휨부재의 최소 철근량
ACI 318-19(2019)는 다음 두 식 중 큰 값을 휨부재의 최소 철근단면적으로 규정하고 있는데, 이 기준은 과거 한국의 설계기준에서 채택했던 것이다.
가 24 MPa이고 가 400 MPa인 경우는 식 (5)가 지배하여, 식 (5)로 최소 철근 단면적을 구하고 철근비로 나타내면 단면의 크기나 비와는 무관하게 0.0035이다. 이 값은 KDS 14 20 20의 조건을 만족하는 단면의 최소 철근비 0.00286, 0.00249, 0.00240, 0.00227, 0.00212의 각각 1.22배, 1.41배, 1.46배, 1.54배, 1.65배에 해당한다. 따라서 직사각형 단면에 대하여 ACI 318-19는 KDS 14 20 20에 비하여 큰 최소 철근비를 규정하고 있음을 알 수 있다.
4.3 KDS 24 14 21 콘크리트교 설계기준에 따른 휨부재의 최소 철근량
KDS 24 14 21 콘크리트교 설계기준(한계상태설계법)은 식 (6)을 휨부재의 최소 철근단면적으로 규정하고 있다. 여기서 는 첫 균열 발생 직전 상태에서 계산된 콘크리트의 인장 영역 단면적으로, 휨부재에서는 비균열 단면의 중립축부터 인장연단 사이의 면적이다. 은 콘크리트의 평균인장강도로 평균압축강도 의 함수인 식 (7)로 결정한다.
이 실험에서 콘크리트의 평균압축강도가 24.0 MPa이므로 이 값을 설계기준압축강도로 한다면 이 값에 4 MPa을 더한 콘크리트 평균압축강도 은 28 MPa이고, 식 (7)에 따른 콘크리트 평균인장강도 은 2.77 MPa로 계산되어, 3.09 MPa로 계산된 4.1절 식 (3)의 콘크리트 파괴계수 의 0.90배에 해당한다. 이와 같은 차이는 미국이 주도하는 강도설계법 설계기준과 유럽이 주도하는 한계상태설계법 설계기준의 차이로, 콘크리트 인장강도를 결정하는 시험방법이 다르기 때문이다. 즉, 강도설계법 설계기준에 따른 식 (3)의 콘크리트 파괴계수 은 휨인장강도(flexural tensile strength)이며, 한계상태설계법 설계기준에 따른 식 (7)의 콘크리트 평균인장강도 은 직접인장강도(direct tensile strength)이다.
참고로 KDS 24 14 21 콘크리트교 설계기준의 해설에서는 콘크리트의 휨인장강도를 부재의 크기효과를 반영한 식 (8)로 결정할 수 있다고 소개하고 있다. 여기서 휨 부재의 크기효과란 부재 깊이가 감소할수록 변형률 경사 영향(strain gradient effect)이 커져서 콘크리트의 인장강도가 증가하는 현상을 말한다. 식 (8)의 휨인장강도는 단면 깊이 가 600 mm 미만인 경우에 평균인장강도 보다 큰 값이 계산되는데, 가 250 mm, 354 mm, 400 mm, 500 mm, 750 mm인 실험체의 경우 이 식에 따른 휨인장강도는 각각 3.74, 3.46, 3.32, 3.05, 2.77 MPa이다.
한편 앞에서 선정한 다섯 가지 단면에 식 (6)을 적용하여 최소 철근단면적을 구하고 철근비로 나타내면 각각 0.00171, 0.00160, 0.00157, 0.00153, 0.00148이다. 이 값들은 KDS 14 20 20의 조건을 만족하는 단면의 최소 철근비 0.00286, 0.00249, 0.00240, 0.00227, 0.00212의 각각 0.60배, 0.64배, 0.65배, 0.67배, 0.70배에 해당하며, ACI 318-19에 따른 0.0035의 각각 0.49배, 0.46배, 0.45배, 0.44배, 0.42배에 해당한다. 즉, 이 값들은 KDS 14 20 20이나 ACI 318-19의 최소 철근단면적 규정을 적용한 결과에 비하여 매우 낮은 안전율을 보인다는 것을 의미한다. 이것은 식 (6)의 휨부재에 대한 최소 철근단면적 수식에 콘크리트의 휨인장강도를 적용하지 않고 직접인장강도인 을 적용하기 때문이고, 또한 콘크리트 인장강도의 변동성을 반영하지 않기 때문이다. 즉, 균열이 발생하는 단면력 이상의 부재강도를 가지려면 콘크리트 인장강도의 최댓값을 기준으로 균열의 발생을 설정하고, 이때의 단면력 이상의 부재강도가 나타나도록 하는 철근량을 최소철근량으로 하여야 안전성을 확보할 수 있을 것이다. 이것은 KDS 14 20 20의 식 (1)에서 균열휨모멘트 에 1보다 큰 계수 1.2를 곱한 이유이다. 따라서 Eurocode 2(CEN 2004)에서 식 (9)로 콘크리트 인장강도의 최댓값을 의미하는 95% 분위수를 정의함을 반영하여, 소요 최소철근량을 결정할 때는 의 1.3배를 적용하고 식 (8)의 휨인장강도 을 설계기준으로 규정한 후 휨부재에는 을 적용하여 식 (10)으로 최소 철근단면적으로 규정할 것을 제안한다.
제안 식 (10)에 따라 다섯 가지 단면의 최소 철근단면적을 구하고 철근비로 나타내면, 각각 0.00301, 0.00260, 0.00245, 0.00219, 0.00192이다. 이 값들은 KDS 14 20 20의 조건을 만족하는 단면의 최소 철근비 0.00286, 0.00249, 0.00240, 0.00227, 0.00212의 각각 1.05배, 1.04배, 1.02배, 0.96배, 0.91배에 해당하며, ACI 318-19에 따른 0.0035의 각각 0.86배, 0.74배, 0.70배, 0.63배, 0.55배로 현재의 기준보다 안전성이 향상된다.
5. 결 론
매우 적은 양의 인장철근을 배치한 휨부재 12개의 재하실험을 통하여 얻은 결론은 다음과 같다.
1) 너무 적은 양의 인장철근이 배치된 부재는 균열휨모멘트 이상의 휨강도를 발휘하지 못함을 확인하였다.
2) 실험체와 동일한 재료강도를 가진 휨부재에 대하여 KDS 14 20 20 콘크리트구조 휨 및 압축 설계기준을 만족하는 단면의 최소 철근비를 구한 결과, 실험으로 얻은 값은 0.00173이고 해석에 의한 값은 0.00224이었다. 따라서 이 실험연구의 경우 KDS 14 20 20 설계기준의 규정이 실험결과의 1.29배인 최소 철근을 요구하는 보수적인 결과를 제공한다고 할 수 있다. 다만 실제 구조물에서도 이와 동일하게 보수적인 결과를 제공한다고는 말할 수 없을 것이므로, KDS 14 20 20 설계기준의 해당 규정에 제시되어 있는 계수 1.2가 실제 구조물의 취성파괴를 방지하는 목적의 최소 철근 규정으로 충분한지에 대해서는 추가의 검토가 필요할 것이다.
3) 콘크리트의 설계기준압축강도가 24 MPa이며 철근의 설계기준항복강도가 400 MPa로 단면 깊이가 250~750 mm이고 단면 깊이에 대한 유효 깊이의 비 가 각각 0.808~0.935인 단면에 대하여 세 가지 설계기준을 적용하여 최소철근비를 비교한 결과 KDS 14 20 20 설계기준은 0.00212~0.00286 범위였으며, ACI 318-19는 0.0035로 KDS 14 20 20 설계기준의 1.22~1.65배이고, KDS 24 14 21 콘크리트교 설계기준은 0.00148~0.00171의 범위로 가장 낮아서 KDS 14 20 20 설계기준의 0.60~0.70배였다.
4) KDS 24 14 21 콘크리트교 설계기준의 최소 철근량 수식에 콘크리트 인장강도의 평균값 대신 최댓값을 의미하는 95% 분위수로 의 1.3배를 적용하고, 휨부재에는 변형률 경사 영향을 반영한 휨인장강도 을 적용하는 경우는 최소철근비가 1.30~1.76배인 0.00192~0.00301의 범위로 증가하여 안전성이 향상되었다.